organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(4-Pyridylmethoxy)phenol

Zhi Zhang, Yu-Jie Li and Xue-Mei Gao*

Department of Animal Science, Jilin Agricultural Science and Technology College, Jilin 132101, People's Republic of China Correspondence e-mail: zz004@163.com

Received 13 October 2009: accepted 9 November 2009

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.004 Å; R factor = 0.059; wR factor = 0.145; data-to-parameter ratio = 13.2.

In the crystal structure of the title compound, $C_{12}H_{11}NO_2$, inversion-related molecules are linked into dimers by pairs of $O-H \cdots N$ hydrogen bonds between the hydroxy group and the pyridyl ring. In addition, a $\pi - \pi$ interaction [with a centroid–centroid distance of 3.78 (1) Å] is found between the two pyridyl rings of the dimer. The benzene ring forms a dihedral angle of 71.6 $(1)^{\circ}$ with the pyridine ring

Related literature

For details of the synthesis, see Gao et al. (2004).

Experimental

Crystal data C12H11NO2

 $M_r = 201.22$

Orthorhombic, Pbca a = 11.800 (3) Å b = 9.114 (4) Å c = 19.041 (7) Å V = 2047.7 (13) Å³

Data collection

Rigaku R-AXIS RAPID	14969 measured reflections
diffractometer	1802 independent reflections
Absorption correction: multi-scan	1139 reflections with $I > 2\sigma($
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.083$
$T_{\min} = 0.968, \ T_{\max} = 0.983$	
Refinement	

 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.145$ 137 parameters H-atom parameters constrained S = 1.03 $\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^{-2}$ $\Delta \rho_{\rm min} = -0.13$ e Å⁻³ 1802 reflections

Z = 8

Mo $K\alpha$ radiation

 $0.37 \times 0.35 \times 0.20 \text{ mm}$

 $> 2\sigma(I)$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 291 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2A\cdots N1^{i}$	0.82	1.95	2.714 (3)	155
Symmetry code: (i) -	$r_{-v_{-7}+1}$			

Symmetry code: (i) -x, -y, -z + 1.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors thank Jilin Agricultural Science and Technology College for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2252).

References

Gao, C.-M., Cao, D. & Zhu, L. (2004). Photogr. Sci. Photochem. 22, 103-107. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, o3160 [doi:10.1107/S1600536809047205]

2-(4-Pyridylmethoxy)phenol

Z. Zhang, Y.-J. Li and X.-M. Gao

Comment

In the title compound, the 2-(pyridin-4-ylmethoxy)phenol ligand, all bonds and angles are in normal region. The benzene ring forms a dihedral angle of $71.6 (1)^{\circ}$ with the pyridine rings (Figure 1).

In the crystal structure, the intramolecular O—H···O hydrogen bonds are found between adjacent hydroxys and O atoms. After then, the intermolecular O—H···N hydrogen bonds and π — π interactions (3.78 (1)° A) link molecules into dimer (Figure 2, Table 1).

Experimental

The 2-(Pyridin-4-ylmethoxy)phenol was synthesized by the reaction of *o*-benzenediol and 4-chloromethylpyridine hydrochloride under nitrogen atmosphere and alkaline condition (Gao *et al.*, 2004). Colourless block crystals of title compound were obtained by slow evaporation of an methanol solution after several days.

Refinement

H atoms bound to C atoms and the H atoms of the hydroxy groups were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene), O—H = 0.82 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$, $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms.

Fig. 2. A dimer view, forming by hydrogen bonds and $\pi - \pi$ interactions. Green dashed lines indicate the hydrogen bonds, blue dashed lines indicate the $\pi - \pi$ interactions.

2-(4-PyridyImethoxy)phenol

Crystal data $C_{12}H_{11}NO_2$ $M_r = 201.22$ Orthorhombic, Pbca

 $F_{000} = 848$ $D_x = 1.305 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2ac 2ab a = 11.800 (3) Å b = 9.114 (4) Å c = 19.041 (7) Å V = 2047.7 (13) Å³ Z = 8

Data collection

Rigaku R-AXIS RAPID diffractometer	1802 independent reflections
Radiation source: fine-focus sealed tube	1139 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.083$
T = 291 K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 3.0^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -14 \rightarrow 12$
$T_{\min} = 0.968, \ T_{\max} = 0.983$	$k = -10 \rightarrow 10$
14969 measured reflections	<i>l</i> = −22→22

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.059$	H-atom parameters constrained
$wR(F^2) = 0.145$	$w = 1/[\sigma^2(F_o^2) + (0.0709P)^2 + 0.2741P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
1802 reflections	$\Delta \rho_{max} = 0.15 \text{ e} \text{ Å}^{-3}$
137 parameters	$\Delta \rho_{min} = -0.13 \text{ e } \text{\AA}^{-3}$
Drimony atom site location: structure inverient direct	

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Cell parameters from 9420 reflections

 $\theta = 3.0-27.4^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Block, colorless

 $0.37 \times 0.35 \times 0.20 \text{ mm}$

T = 291 K

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.0611 (2)	-0.0878 (3)	0.41781 (16)	0.0667 (8)
H1	0.0138	-0.0732	0.3794	0.080*
C2	0.0381 (2)	-0.1961 (3)	0.46523 (17)	0.0704 (8)
H2	-0.0256	-0.2541	0.4577	0.085*
C3	0.1917 (2)	-0.1394 (3)	0.53017 (15)	0.0682 (8)
Н3	0.2377	-0.1565	0.5690	0.082*
C4	0.2214 (2)	-0.0278 (3)	0.48491 (15)	0.0640 (7)
H4	0.2859	0.0280	0.4934	0.077*
C5	0.1553 (2)	0.0002 (3)	0.42746 (14)	0.0555 (7)
C6	0.1845 (2)	0.1187 (3)	0.37560 (15)	0.0683 (8)
H6A	0.2593	0.1576	0.3856	0.082*
H6B	0.1849	0.0789	0.3284	0.082*
C7	0.1055 (2)	0.3409 (3)	0.33056 (13)	0.0520 (7)
C8	0.1831 (2)	0.3476 (3)	0.27619 (14)	0.0617 (7)
H8	0.2389	0.2761	0.2721	0.074*
C9	0.1775 (2)	0.4614 (3)	0.22763 (14)	0.0666 (8)
Н9	0.2288	0.4653	0.1906	0.080*
C10	0.0966 (2)	0.5674 (3)	0.23453 (15)	0.0683 (8)
H10	0.0934	0.6441	0.2024	0.082*
C11	0.0199 (2)	0.5614 (3)	0.28856 (15)	0.0674 (8)
H11	-0.0347	0.6345	0.2927	0.081*
C12	0.0226 (2)	0.4485 (3)	0.33687 (14)	0.0573 (7)
N1	0.1011 (2)	-0.2237 (2)	0.52130 (12)	0.0647 (6)
01	0.10215 (15)	0.23246 (18)	0.38082 (9)	0.0601 (5)
O2	-0.05674 (18)	0.4472 (2)	0.38861 (11)	0.0786 (7)
H2A	-0.0530	0.3694	0.4101	0.118*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0637 (17)	0.0617 (18)	0.0747 (18)	0.0019 (15)	-0.0105 (14)	0.0120 (16)
0.0573 (18)	0.0585 (19)	0.095 (2)	-0.0047 (14)	-0.0003 (17)	0.0094 (17)
0.075 (2)	0.0643 (19)	0.0654 (18)	0.0133 (17)	-0.0043 (15)	0.0045 (15)
0.0631 (17)	0.0499 (16)	0.0790 (19)	-0.0027 (14)	-0.0037 (16)	-0.0003 (15)
0.0557 (15)	0.0437 (15)	0.0670 (17)	0.0100 (13)	0.0081 (14)	0.0017 (13)
0.0689 (18)	0.0535 (17)	0.083 (2)	0.0132 (15)	0.0134 (15)	0.0154 (15)
0.0568 (15)	0.0428 (14)	0.0564 (15)	-0.0058 (13)	-0.0043 (13)	0.0051 (12)
0.0640 (17)	0.0532 (16)	0.0679 (17)	-0.0038 (13)	-0.0007 (14)	0.0006 (14)
0.0764 (19)	0.0660 (18)	0.0573 (16)	-0.0129 (16)	-0.0033 (14)	0.0084 (15)
0.0752 (19)	0.0616 (18)	0.0681 (19)	-0.0076 (16)	-0.0171 (16)	0.0177 (15)
0.0686 (18)	0.0556 (17)	0.078 (2)	0.0034 (14)	-0.0133 (16)	0.0130 (15)
0.0576 (16)	0.0490 (16)	0.0652 (17)	0.0019 (14)	-0.0038 (14)	0.0020 (13)
0.0634 (14)	0.0528 (14)	0.0778 (16)	0.0094 (12)	0.0135 (13)	0.0104 (12)
0.0650 (12)	0.0450 (10)	0.0703 (12)	0.0096 (9)	0.0098 (9)	0.0095 (9)
	U^{11} 0.0637 (17) 0.0573 (18) 0.075 (2) 0.0631 (17) 0.0557 (15) 0.0689 (18) 0.0568 (15) 0.0640 (17) 0.0764 (19) 0.0752 (19) 0.0686 (18) 0.0576 (16) 0.0634 (14) 0.0650 (12)	U^{11} U^{22} $0.0637 (17)$ $0.0617 (18)$ $0.0573 (18)$ $0.0585 (19)$ $0.075 (2)$ $0.0643 (19)$ $0.0631 (17)$ $0.0499 (16)$ $0.0557 (15)$ $0.0437 (15)$ $0.0689 (18)$ $0.0535 (17)$ $0.0568 (15)$ $0.0428 (14)$ $0.0640 (17)$ $0.0532 (16)$ $0.0752 (19)$ $0.0616 (18)$ $0.0752 (19)$ $0.0616 (18)$ $0.0686 (18)$ $0.0556 (17)$ $0.0576 (16)$ $0.0490 (16)$ $0.0634 (14)$ $0.0528 (14)$ $0.0650 (12)$ $0.0450 (10)$	U^{11} U^{22} U^{33} $0.0637 (17)$ $0.0617 (18)$ $0.0747 (18)$ $0.0573 (18)$ $0.0585 (19)$ $0.095 (2)$ $0.075 (2)$ $0.0643 (19)$ $0.0654 (18)$ $0.0631 (17)$ $0.0499 (16)$ $0.0790 (19)$ $0.0557 (15)$ $0.0437 (15)$ $0.0670 (17)$ $0.0689 (18)$ $0.0535 (17)$ $0.083 (2)$ $0.0568 (15)$ $0.0428 (14)$ $0.0564 (15)$ $0.0640 (17)$ $0.0532 (16)$ $0.0679 (17)$ $0.0764 (19)$ $0.0660 (18)$ $0.0573 (16)$ $0.0752 (19)$ $0.0616 (18)$ $0.0681 (19)$ $0.0686 (18)$ $0.0556 (17)$ $0.078 (2)$ $0.0576 (16)$ $0.0490 (16)$ $0.0652 (17)$ $0.0634 (14)$ $0.0528 (14)$ $0.0778 (16)$ $0.0650 (12)$ $0.0450 (10)$ $0.0703 (12)$	U^{11} U^{22} U^{33} U^{12} $0.0637 (17)$ $0.0617 (18)$ $0.0747 (18)$ $0.0019 (15)$ $0.0573 (18)$ $0.0585 (19)$ $0.095 (2)$ $-0.0047 (14)$ $0.075 (2)$ $0.0643 (19)$ $0.0654 (18)$ $0.0133 (17)$ $0.0631 (17)$ $0.0499 (16)$ $0.0790 (19)$ $-0.0027 (14)$ $0.0557 (15)$ $0.0437 (15)$ $0.0670 (17)$ $0.0100 (13)$ $0.0689 (18)$ $0.0535 (17)$ $0.083 (2)$ $0.0132 (15)$ $0.0568 (15)$ $0.0428 (14)$ $0.0564 (15)$ $-0.0058 (13)$ $0.0640 (17)$ $0.0532 (16)$ $0.0679 (17)$ $-0.0038 (13)$ $0.0764 (19)$ $0.0660 (18)$ $0.0573 (16)$ $-0.0129 (16)$ $0.0752 (19)$ $0.0616 (18)$ $0.0681 (19)$ $-0.0076 (16)$ $0.0686 (18)$ $0.0556 (17)$ $0.078 (2)$ $0.0034 (14)$ $0.0576 (16)$ $0.0490 (16)$ $0.0652 (17)$ $0.0094 (12)$ $0.0650 (12)$ $0.0450 (10)$ $0.0703 (12)$ $0.0096 (9)$	U^{11} U^{22} U^{33} U^{12} U^{13} $0.0637 (17)$ $0.0617 (18)$ $0.0747 (18)$ $0.0019 (15)$ $-0.0105 (14)$ $0.0573 (18)$ $0.0585 (19)$ $0.095 (2)$ $-0.0047 (14)$ $-0.0003 (17)$ $0.075 (2)$ $0.0643 (19)$ $0.0654 (18)$ $0.0133 (17)$ $-0.0043 (15)$ $0.0631 (17)$ $0.0499 (16)$ $0.0790 (19)$ $-0.0027 (14)$ $-0.0037 (16)$ $0.0557 (15)$ $0.0437 (15)$ $0.0670 (17)$ $0.0100 (13)$ $0.0081 (14)$ $0.0689 (18)$ $0.0535 (17)$ $0.083 (2)$ $0.0132 (15)$ $0.0134 (15)$ $0.0568 (15)$ $0.0428 (14)$ $0.0564 (15)$ $-0.0058 (13)$ $-0.0043 (13)$ $0.0640 (17)$ $0.0522 (16)$ $0.0679 (17)$ $-0.0038 (13)$ $-0.0007 (14)$ $0.0752 (19)$ $0.0616 (18)$ $0.0573 (16)$ $-0.0129 (16)$ $-0.0133 (14)$ $0.0756 (16)$ $0.0490 (16)$ $0.0682 (17)$ $0.0034 (14)$ $-0.0133 (16)$ $0.0576 (16)$ $0.0490 (16)$ $0.0652 (17)$ $0.0019 (14)$ $-0.0038 (14)$ $0.0634 (14)$ $0.0528 (14)$ $0.0778 (16)$ $0.0094 (12)$ $0.0135 (13)$ $0.0650 (12)$ $0.0450 (10)$ $0.0703 (12)$ $0.0096 (9)$ $0.0098 (9)$

supplementary materials

02	0.0792 (14)	0.0630 (14)	0.0936 (15)	0.0222 (11)	0.0211 (12)	0.0206 (11)
Geometric parar	neters (Å, °)					
C1—C2		1.365 (4)	С7—0	D1	1.37	(6 (3)
C1—C5		1.384 (4)	C7—0	C8	1.38	3 (3)
C1—H1		0.9300	С7—0	C12	1.39	00 (3)
C2—N1		1.325 (3)	C8—0	C9	1.39	91 (4)
С2—Н2		0.9300	C8—I	H8	0.93	00
C3—N1		1.327 (3)	С9—(210	1.36	5 (4)
C3—C4		1.378 (4)	C9—I	H9	0.93	00
С3—Н3		0.9300	C10—	-C11	1.37	'1 (4)
C4—C5		1.367 (4)	C10—	-H10	0.93	00
C4—H4		0.9300	C11-	-C12	1.38	31 (4)
C5—C6		1.503 (4)	C11—	-H11	0.93	00
C6—O1		1.424 (3)	C12—	-02	1.35	9(3)
С6—Н6А		0.9700	O2—I	H2A	0.82	200
С6—Н6В		0.9700				
C2—C1—C5		119.4 (3)	01—0	С7—С8	124	.8 (2)
C2-C1-H1		120.3	01—0	C7—C12	115	2 (2)
С5—С1—Н1		120.3	C8—(C7—C12	119	9 (2)
N1-C2-C1		124.0 (3)	С7—0	С8—С9	120	.0 (3)
N1—C2—H2		118.0	С7—0	С8—Н8	120	.0
С1—С2—Н2		118.0	С9—0	С8—Н8	120	.0
N1—C3—C4		123.5 (3)	C10—	-C9C8	119	8 (3)
N1—C3—H3		118.3	C10—	-С9—Н9	120	.1
С4—С3—Н3		118.3	C8—0	С9—Н9	120	.1
C5—C4—C3		119.6 (3)	С9—(C10—C11	120	.4 (3)
С5—С4—Н4		120.2	С9—(С10—Н10	119	8
С3—С4—Н4		120.2	C11—	-C10—H10	119	8
C4—C5—C1		117.1 (3)	C10—	-C11—C12	120	.9 (3)
C4—C5—C6		122.0 (3)	C10—	-C11—H11	119	5
C1—C5—C6		120.9 (3)	C12—	-C11—H11	119	5
O1—C6—C5		108.7 (2)	O2—0	C12—C11	118	3 (2)
O1—C6—H6A		109.9	02—0	С12—С7	122	.7 (2)
С5—С6—Н6А		109.9	C11—	-C12—C7	119	0 (3)
O1—C6—H6B		109.9	C2—1	N1—C3	116	4 (2)
С5—С6—Н6В		109.9	С7—0	D1—C6	117	04 (19)
H6A—C6—H6B		108.3	C12—	-O2—H2A	109	.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H2A…N1 ⁱ	0.82	1.95	2.714 (3)	155
Symmetry codes: (i) $-x$, $-y$, $-z+1$.				

Fig. 1

